The Right to Process Data for Machine Learning Purposes in the EU

Harvard Law School, Harvard Journal of Law & Technology (JOLT) Online Digest 2020, Forthcoming

New interdisciplinary Stanford University AI & Law research article: “The Right to Process Data for Machine Learning Purposes in the EU”.

Data Act & European data-driven economy

Europe is now at a crucial juncture in deciding how to deploy data driven technologies in ways that encourage democracy, prosperity and the well-being of European citizens. The upcoming European Data Act provides a major window of opportunity to change the story. In this respect, it is key that the European Commission takes firm action, removes overbearing policy and regulatory obstacles, strenuously harmonizes relevant legislation and provides concrete incentives and mechanisms for access, sharing and re-use of data. The article argues that to ensure an efficiently functioning European data-driven economy, a new and as yet unused term must be introduced to the field of AI & law: the right to process data for machine learning purposes.

Data has become a primary resource

Data has become a primary resource that should not be enclosed or commodified per se, but used for the common good. Commons based production and data for social good initiatives should be stimulated by the state. We need not to think in terms of exclusive, private property on data, but in terms of rights and freedoms to use, (modalities of) access, process and share data. If necessary and desirable for the progress of society, the state can implement new forms of property. Against this background the article explores normative justifications for open innovation and shifts in the (intellectual) property paradigm, drawing inspiration from the works of canonical thinkers such as Locke, Marx, Kant and Hegel.

Ius utendi et fruendi for primary resource data

The article maintains that there should be exceptions to (de facto, economic or legal) ownership claims on data that provide user rights and freedom to operate in the setting of AI model training. It concludes that this exception is conceivable as a legal concept analogous to a quasi, imperfect usufruct in the form of a right to process data for machine learning purposes. A combination of usus and fructus (ius utendi et fruendi), not for land but for primary resource data. A right to process data that works within the context of AI and the Internet of Things (IoT), and that fits in the EU acquis communautaire. Such a right makes access, sharing and re-use of data possible, and helps to fulfil the European Strategy for Data’s desiderata.

Read More

Computer generated works: wie of wat is eigenaar?

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/computer-generated-works-eigenaar/

Nieuwe technologieën roepen nieuwe juridische vragen op. Zo ook computers die creatieve werken maken. Wie of wat is de eigenaar van zo’n werk? Mauritz Kop geeft uitleg.

Machines uitgerust met artificiële intelligentie (AI) begeven zich op het terrein van de schone kunsten. Computers schilderen, schrijven en componeren er ijverig op los. Zo genereerde The Next Rembrandt een 3D-geprint meesterwerk, schilderde The Art and Artificial Intelligence Lab een levensechte Mona Lisa, schreef Kurzweils Cybernetic Poet klassieke sonnetten en produceerde Amper Music een complete muziek-cd. Alles in luttele seconden.

Auteursrechten vestigen is problematisch

Het is voorstelbaar dat er auteursrechten rusten op de voortbrengselen van AI-systemen zelf, zoals kunst, muziek, literatuur, uitvindingen, industriële toepassingen, algoritmes, code en andersoortige scheppingen. Men kan zich als wetgever de vraag stellen of er voor computer generated works sui generis categorieën rechten (met een korte looptijd en zonder persoonlijkheidsrechten) in het leven moeten worden geroepen.

Kunnen IE-rechten überhaupt AI-scheppingen beschermen?

De wet in haar huidige vorm erkent geen niet-menselijke auteursrechten. Auteurschap is fundamenteel verbonden met menselijkheid; met scheppingen van de menselijke geest. Dat vloeit bijvoorbeeld voort uit het bekende Infopaq-arrest van het EU Hof van Justitie uit 2009, al is dit arrest niet geschreven met machine learning en kunstmatige intelligentie in het achterhoofd. Is het dogmatisch en doctrinair correct om aan te nemen dat er geen copyright kan zijn op pure AI creations? AI is per slot van rekening niet menselijk en er is bovendien geen menselijke originaliteit en creativiteit aanwezig. Het korte antwoord luidt: ja.

Algoritmisch auteurschap: goed idee of niet?

In tegenstelling tot de benadering van de EU en de VS, heeft het Verenigd Koninkrijk een computer generated works-regime geïmplementeerd, wat betekent dat de programmeur van de AI het auteursrecht krijgt op de output van de machine. Met andere woorden: het VK, en recentelijk ook de Chinese rechter, breiden het menselijke auteurschap uit naar algoritmisch auteurschap.

AI-machine kan geen copyright bezitten

Auteursrechten kunnen alleen eigendom zijn van rechtssubjecten, dus personen of bedrijven. Een AI-machine kan zelf geen copyright bezitten op AI made creations omdat een AI-systeem geen rechtssubjectiviteit en ook geen rechtspersoonlijkheid bezit. AI-systemen kwalificeren als rechtsobject, niet als rechtssubject.

‘Publiek eigendom uit de machine’ en menselijke interventie

Menselijk auteurschap blijft het normatieve orgelpunt van het intellectuele eigendomsrecht. Delen van het meerlagige, uit het Romeinse recht afkomstige eigendomsparadigma kunnen relevant zijn voor AI. Voortbouwend op dit raamwerk is er een nieuw publiek domein model denkbaar voor AI creations and inventions die de autonomiedrempel overschrijden: res publicae ex machina (publiek eigendom uit de machine).

Read More

Machine Learning & EU Data Sharing Practices

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2020

New multidisciplinary research article: ‘Machine Learning & EU Data Sharing Practices’.

In short, the article connects the dots between intellectual property (IP) on data, data ownership and data protection (GDPR and FFD), in an easy to understand manner. It also provides AI and Data policy and regulatory recommendations to the EU legislature.

As we all know, machine learning & data science can help accelerate many aspects of the development of drugs, antibody prophylaxis, serology tests and vaccines.

Supervised machine learning needs annotated training datasets

Data sharing is a prerequisite for a successful Transatlantic AI ecosystem. Hand-labelled, annotated training datasets (corpora) are a sine qua non for supervised machine learning. But what about intellectual property (IP) and data protection?

Data that represent IP subject matter are protected by IP rights. Unlicensed (or uncleared) use of machine learning input data potentially results in an avalanche of copyright (reproduction right) and database right (extraction right) infringements. The article offers three solutions that address the input (training) data copyright clearance problem and create breathing room for AI developers.

The article contends that introducing an absolute data property right or a (neighbouring) data producer right for augmented machine learning training corpora or other classes of data is not opportune.

Legal reform and data-driven economy

In an era of exponential innovation, it is urgent and opportune that both the TSD, the CDSM and the DD shall be reformed by the EU Commission with the data-driven economy in mind.

Freedom of expression and information, public domain, competition law

Implementing a sui generis system of protection for AI-generated Creations & Inventions is -in most industrial sectors- not necessary since machines do not need incentives to create or invent. Where incentives are needed, IP alternatives exist. Autonomously generated non-personal data should fall into the public domain. The article argues that strengthening and articulation of competition law is more opportune than extending IP rights.

Data protection and privacy

More and more datasets consist of both personal and non-personal machine generated data. Both the General Data Protection Regulation (GDPR) and the Regulation on the free flow of non-personal data (FFD) apply to these ‘mixed datasets’.

Besides the legal dimensions, the article describes the technical dimensions of data in machine learning and federated learning.

Modalities of future AI-regulation

Society should actively shape technology for good. The alternative is that other societies, with different social norms and democratic standards, impose their values on us through the design of their technology. With built-in public values, including Privacy by Design that safeguards data protection, data security and data access rights, the federated learning model is consistent with Human-Centered AI and the European Trustworthy AI paradigm.

Read More

Data delen als voorwaarde voor een succesvol AI-ecosysteem

Trainingsdatasets voor kunstmatige intelligentie: enkele juridische aspecten

Data delen (data sharing) of liever het vermogen om hoge kwaliteit trainingsdatasets te kunnen analyseren om een AI model -zoals een generative adversarial network- te trainen, is een voorwaarde voor een succesvol AI-ecosysteem in Nederland.

In ons turbulente technologische tijdperk nemen fysieke aanknopingspunten als papier of tastbare producten binnen de context van data -of informatie- in belang af. Informatie is niet langer aan een continent, staat of plaats gebonden. Informatietechnologie zoals kunstmatige intelligentie ontwikkelt zich in een dermate hoog tempo, dat de juridische problemen die daaruit voortvloeien in belangrijke mate onvoorspelbaar zijn. Hierdoor ontstaan -kort gezegd- problemen voor tech startups en scaleups.

In dit artikel een serie -mede in onderlinge samenhang te beschouwen aanbevelingen, suggesties en inventieve oplossingen om anno 2020 tot waardevolle nationale en Europese dataketens te komen.

Data donor codicil

Introductie van een Europees (of nationaal) data donor codicil waarmee een patiënt of consument vrijwillig data kan doneren aan de overheid en/of het bedrijfsleven, AVG-proof. Hier kunnen waardeketens worden gecreëerd door de sensor data van medische Internet of Things (IoT) apparaten en smart wearables van overheidswege te accumuleren. Anoniem of met biomarkers.

Data interoperabel en gestandaardiseerd

Unificatie van data uitwisselingsmodellen zodat deze interoperabel en gestandaardiseerd worden in het IoT. Een voorbeeld is een Europees EPD (Elektronisch Patiënten Dossier), i.e een Electronic Healthcare Record (EMR). AI certificering en standaardisatie (zoals ISO, ANSI, IEEE / IEC) dient bij voorkeur niet te worden uitgevoerd door private partijen met commerciële doelstellingen, maar door onafhankelijke openbare instanties (vergelijk het Amerikaanse FDA).

Machine generated (non) personal data

Een andere categorisering die we kunnen maken is enerzijds publieke (in handen van de overheid) machine generated (non) personal data, en private machine generated (non) personal data. Met machine generated data bedoelen we met name informatie en gegevens die continue door edge devices worden gegenereerd in het Internet of Things (IoT). Deze edge devices staan via edge (of fod) nodes (zenders) in verbinding met datacenters die samen met edge servers de cloud vormen. Deze architectuur noemen we ook wel edge computing.

Juridische dimensie

Data, of informatie heeft een groot aantal juridische dimensies. Aan data delen kleven potentieel intellectueel eigendomsrechtelijke (verbodsrecht en vergoedingsrecht), ethische, grondrechtelijke (privacy, vrijheid van meningsuiting), contractenrechtelijke en internationaal handelsrechtelijke aspecten. Juridisch eigendom op data bestaat anno 2020 niet omdat het -vanuit goederenrechtelijk oogpunt- niet als zaak wordt gekwalificeerd. Data heeft wel vermogensrechtelijke aspecten.

Read More

AI Trade Mission to Boston with Prime Minister Mark Rutte

AIRecht.nl lawyers Mauritz Kop and Suzan Slijpen joined the Dutch AI trade mission to Boston, Massachusetts led by Prime Minister Mark Rutte and Minister Bruno Bruins. It was a big success. We visited leading companies in health care, climate, and robotics and AI and participated in high quality meetings and events at -inter alia- Harvard Wyss Institute, MIT, IBM Watson, Amazon Robotics, Humatics and Philips Healthworks R&D HQ USA.

AI-Chefsache interview

During debriefing at the Museum of Fine Arts & Koch Gallery, Prime Minister Mark Rutte and Mauritz Kop reflected on AI becoming Chefsache, the concept of Trustworthy AI, exporting European ethical values to the USA via the Dutch AI Impact Assessment (ECP), and building a strong and vibrant AI ecosystem in The Netherlands.

AIRecht.nl website included in IBM Watson presentation

We were honoured and thrilled to see that Nicola Palmarini, Global Manager AI for Healthy Aging IBM Research - MIT/IBM Watson AI Lab Cambridge and Tedx Speaker, included our AIRecht.nl website in his presentation about the moral, legal and ethical implications of AI, at IBM Watson Health Experience Centre.

Building on shared expierences

Learning and building on shared experiences is a two way street. During the mission, we gathered knowledge of the technological state of the art in Robotics & AI. We shared our own latest research insights on AI & IP, open access, public domain and ethics that facilitate innovation with influential academic institutions and ambitious, frontrunning entrepreneurs. This blog contains a photo report of our economic mission to the beautiful city of Boston.

Read More