Shaping the Law of AI: Transatlantic Perspectives

Stanford-Vienna Transatlantic Technology Law Forum, TTLF Working Papers No. 65, Stanford University (2020).

New Stanford innovation policy research: “Shaping the Law of AI: Transatlantic Perspectives”.

The race for AI dominance

The race for AI dominance is a competition in values, as much as a competition in technology. In light of global power shifts and altering geopolitical relations, it is indispensable for the EU and the U.S to build a transatlantic sustainable innovation ecosystem together, based on both strategic autonomy, mutual economic interests and shared democratic & constitutional values. Discussing available informed policy variations to achieve this ecosystem, will contribute to the establishment of an underlying unified innovation friendly regulatory framework for AI & data. In such a unified framework, the rights and freedoms we cherish, play a central role. Designing joint, flexible governance solutions that can deal with rapidly changing exponential innovation challenges, can assist in bringing back harmony, confidence, competitiveness and resilience to the various areas of the transatlantic markets.

25 AI & data regulatory recommendations

Currently, the European Commission (EC) is drafting its Law of AI. This article gives 25 AI & data regulatory recommendations to the EC, in response to its Inception Impact Assessment on the “Artificial intelligence – ethical and legal requirements” legislative proposal. In addition to a set of fundamental, overarching core AI rules, the article suggests a differentiated industry-specific approach regarding incentives and risks.

European AI legal-ethical framework

Lastly, the article explores how the upcoming European AI legal-ethical framework’s norms, standards, principles and values can be connected to the United States, from a transatlantic, comparative law perspective. When shaping the Law of AI, we should have a clear vision in our minds of the type of society we want, and the things we care so deeply about in the Information Age, at both sides of the Ocean.

Read More

We hebben dringend een recht op dataprocessing nodig

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/we-dringend-recht-dataprocessing-nodig/

Bij een datagedreven economie hoort een gezond ecosysteem voor machine learning en artificial intelligence. Mauritz Kop beschrijft de juridische problemen en oplossingen hierbij. “We hebben dringend een recht op dataprocessing nodig.”

5 juridische obstakels voor een succesvol AI-ecosysteem

Eerder schreef ik dat vraagstukken over het (intellectueel) eigendom van data, databescherming en privacy een belemmering vormen voor het (her)gebruiken en delen van hoge kwaliteit data tussen burgers, bedrijven, onderzoeksinstellingen en de overheid. Er bestaat in Europa nog geen goed functionerend juridisch-technisch systeem dat rechtszekerheid en een gunstig investeringsklimaat biedt en bovenal is gemaakt met de datagedreven economie in het achterhoofd. We hebben hier te maken met een complex probleem dat in de weg staat aan exponentiële innovatie.

Auteursrechten, Privacy en Rechtsonzekerheid over eigendom van data

De eerste juridische horde bij datadelen is auteursrechtelijk van aard. Ten tweede kunnen er (sui generis) databankenrechten van derden rusten op (delen van) de training-, testing- of validatiedataset. Ten derde zullen bedrijven na een strategische afweging kiezen voor geheimhouding, en niet voor het patenteren van hun technische vondst. Het vierde probleempunt is rechtsonzekerheid over juridisch eigendom van data. Een vijfde belemmering is de vrees voor de Algemene verordening gegevensbescherming (AVG). Onwetendheid en rechtsonzekerheid resulteert hier in risicomijdend gedrag. Het leidt niet tot spectaculaire Europese unicorns die de concurrentie aankunnen met Amerika en China.

Wat is machine learning eigenlijk?

Vertrouwdheid met technische aspecten van data in machine learning geeft juristen, datawetenschappers en beleidsmakers de mogelijkheid om effectiever te communiceren over toekomstige regelgeving voor AI en het delen van data.

Machine learning en datadelen zijn van elementair belang voor de geboorte en de evolutie van AI. En daarmee voor het behoud van onze democratische waarden, welvaart en welzijn. Een machine learning-systeem wordt niet geprogrammeerd, maar getraind. Tijdens het leerproces ontvangt een computer uitgerust met kustmatige intelligentie zowel invoergegevens (trainingdata), als de verwachte, bij deze inputdata behorende antwoorden. Het AI-systeem moet zelf de bijpassende regels en wetmatigheden formuleren met een kunstmatig brein. Algoritmische, voorspellende modellen kunnen vervolgens worden toegepast op nieuwe datasets om nieuwe, correcte antwoorden te produceren.

Dringend nodig: het recht op dataprocessing

De Europese Commissie heeft de ambitie om datasoevereiniteit terug te winnen. Europa moet een internationale datahub worden. Dit vereist een modern juridisch raamwerk in de vorm van de Europese Data Act, die in de loop van 2021 wordt verwacht. Het is naar mijn idee cruciaal dat de Data Act een expliciet recht op dataprocessing bevat.

Technologie is niet neutraal

Tegelijkertijd kan de architectuur van digitale systemen de sociaal-maatschappelijke impact van digitale transformatie reguleren. Een digitaal inclusieve samenleving moet technologie actief vormgeven. Technologie an sich is namelijk nooit neutraal. Maatschappelijke waarden zoals transparantie, vertrouwen, rechtvaardigheid, controle en cybersecurity moeten worden ingebouwd in het design van AI-systemen en de benodigde trainingdatasets, vanaf de eerste regel code.

Read More

The Right to Process Data for Machine Learning Purposes in the EU

Harvard Law School, Harvard Journal of Law & Technology (JOLT) Online Digest 2020, Forthcoming

New interdisciplinary Stanford University AI & Law research article: “The Right to Process Data for Machine Learning Purposes in the EU”.

Data Act & European data-driven economy

Europe is now at a crucial juncture in deciding how to deploy data driven technologies in ways that encourage democracy, prosperity and the well-being of European citizens. The upcoming European Data Act provides a major window of opportunity to change the story. In this respect, it is key that the European Commission takes firm action, removes overbearing policy and regulatory obstacles, strenuously harmonizes relevant legislation and provides concrete incentives and mechanisms for access, sharing and re-use of data. The article argues that to ensure an efficiently functioning European data-driven economy, a new and as yet unused term must be introduced to the field of AI & law: the right to process data for machine learning purposes.

Data has become a primary resource

Data has become a primary resource that should not be enclosed or commodified per se, but used for the common good. Commons based production and data for social good initiatives should be stimulated by the state. We need not to think in terms of exclusive, private property on data, but in terms of rights and freedoms to use, (modalities of) access, process and share data. If necessary and desirable for the progress of society, the state can implement new forms of property. Against this background the article explores normative justifications for open innovation and shifts in the (intellectual) property paradigm, drawing inspiration from the works of canonical thinkers such as Locke, Marx, Kant and Hegel.

Ius utendi et fruendi for primary resource data

The article maintains that there should be exceptions to (de facto, economic or legal) ownership claims on data that provide user rights and freedom to operate in the setting of AI model training. It concludes that this exception is conceivable as a legal concept analogous to a quasi, imperfect usufruct in the form of a right to process data for machine learning purposes. A combination of usus and fructus (ius utendi et fruendi), not for land but for primary resource data. A right to process data that works within the context of AI and the Internet of Things (IoT), and that fits in the EU acquis communautaire. Such a right makes access, sharing and re-use of data possible, and helps to fulfil the European Strategy for Data’s desiderata.

Read More

Computer generated works: wie of wat is eigenaar?

Deze column is gepubliceerd op platform VerderDenken.nl van het Centrum voor Postacademisch Juridisch Onderwijs (CPO) van de Radboud Universiteit Nijmegen. https://www.ru.nl/cpo/verderdenken/columns/computer-generated-works-eigenaar/

Nieuwe technologieën roepen nieuwe juridische vragen op. Zo ook computers die creatieve werken maken. Wie of wat is de eigenaar van zo’n werk? Mauritz Kop geeft uitleg.

Machines uitgerust met artificiële intelligentie (AI) begeven zich op het terrein van de schone kunsten. Computers schilderen, schrijven en componeren er ijverig op los. Zo genereerde The Next Rembrandt een 3D-geprint meesterwerk, schilderde The Art and Artificial Intelligence Lab een levensechte Mona Lisa, schreef Kurzweils Cybernetic Poet klassieke sonnetten en produceerde Amper Music een complete muziek-cd. Alles in luttele seconden.

Auteursrechten vestigen is problematisch

Het is voorstelbaar dat er auteursrechten rusten op de voortbrengselen van AI-systemen zelf, zoals kunst, muziek, literatuur, uitvindingen, industriële toepassingen, algoritmes, code en andersoortige scheppingen. Men kan zich als wetgever de vraag stellen of er voor computer generated works sui generis categorieën rechten (met een korte looptijd en zonder persoonlijkheidsrechten) in het leven moeten worden geroepen.

Kunnen IE-rechten überhaupt AI-scheppingen beschermen?

De wet in haar huidige vorm erkent geen niet-menselijke auteursrechten. Auteurschap is fundamenteel verbonden met menselijkheid; met scheppingen van de menselijke geest. Dat vloeit bijvoorbeeld voort uit het bekende Infopaq-arrest van het EU Hof van Justitie uit 2009, al is dit arrest niet geschreven met machine learning en kunstmatige intelligentie in het achterhoofd. Is het dogmatisch en doctrinair correct om aan te nemen dat er geen copyright kan zijn op pure AI creations? AI is per slot van rekening niet menselijk en er is bovendien geen menselijke originaliteit en creativiteit aanwezig. Het korte antwoord luidt: ja.

Algoritmisch auteurschap: goed idee of niet?

In tegenstelling tot de benadering van de EU en de VS, heeft het Verenigd Koninkrijk een computer generated works-regime geïmplementeerd, wat betekent dat de programmeur van de AI het auteursrecht krijgt op de output van de machine. Met andere woorden: het VK, en recentelijk ook de Chinese rechter, breiden het menselijke auteurschap uit naar algoritmisch auteurschap.

AI-machine kan geen copyright bezitten

Auteursrechten kunnen alleen eigendom zijn van rechtssubjecten, dus personen of bedrijven. Een AI-machine kan zelf geen copyright bezitten op AI made creations omdat een AI-systeem geen rechtssubjectiviteit en ook geen rechtspersoonlijkheid bezit. AI-systemen kwalificeren als rechtsobject, niet als rechtssubject.

‘Publiek eigendom uit de machine’ en menselijke interventie

Menselijk auteurschap blijft het normatieve orgelpunt van het intellectuele eigendomsrecht. Delen van het meerlagige, uit het Romeinse recht afkomstige eigendomsparadigma kunnen relevant zijn voor AI. Voortbouwend op dit raamwerk is er een nieuw publiek domein model denkbaar voor AI creations and inventions die de autonomiedrempel overschrijden: res publicae ex machina (publiek eigendom uit de machine).

Read More

Machine Learning & EU Data Sharing Practices

Stanford - Vienna Transatlantic Technology Law Forum, Transatlantic Antitrust and IPR Developments, Stanford University, Issue No. 1/2020

New multidisciplinary research article: ‘Machine Learning & EU Data Sharing Practices’.

In short, the article connects the dots between intellectual property (IP) on data, data ownership and data protection (GDPR and FFD), in an easy to understand manner. It also provides AI and Data policy and regulatory recommendations to the EU legislature.

As we all know, machine learning & data science can help accelerate many aspects of the development of drugs, antibody prophylaxis, serology tests and vaccines.

Supervised machine learning needs annotated training datasets

Data sharing is a prerequisite for a successful Transatlantic AI ecosystem. Hand-labelled, annotated training datasets (corpora) are a sine qua non for supervised machine learning. But what about intellectual property (IP) and data protection?

Data that represent IP subject matter are protected by IP rights. Unlicensed (or uncleared) use of machine learning input data potentially results in an avalanche of copyright (reproduction right) and database right (extraction right) infringements. The article offers three solutions that address the input (training) data copyright clearance problem and create breathing room for AI developers.

The article contends that introducing an absolute data property right or a (neighbouring) data producer right for augmented machine learning training corpora or other classes of data is not opportune.

Legal reform and data-driven economy

In an era of exponential innovation, it is urgent and opportune that both the TSD, the CDSM and the DD shall be reformed by the EU Commission with the data-driven economy in mind.

Freedom of expression and information, public domain, competition law

Implementing a sui generis system of protection for AI-generated Creations & Inventions is -in most industrial sectors- not necessary since machines do not need incentives to create or invent. Where incentives are needed, IP alternatives exist. Autonomously generated non-personal data should fall into the public domain. The article argues that strengthening and articulation of competition law is more opportune than extending IP rights.

Data protection and privacy

More and more datasets consist of both personal and non-personal machine generated data. Both the General Data Protection Regulation (GDPR) and the Regulation on the free flow of non-personal data (FFD) apply to these ‘mixed datasets’.

Besides the legal dimensions, the article describes the technical dimensions of data in machine learning and federated learning.

Modalities of future AI-regulation

Society should actively shape technology for good. The alternative is that other societies, with different social norms and democratic standards, impose their values on us through the design of their technology. With built-in public values, including Privacy by Design that safeguards data protection, data security and data access rights, the federated learning model is consistent with Human-Centered AI and the European Trustworthy AI paradigm.

Read More